Implementing Portfolio Theory -
Estimating the Correlation Structure of Security Returns.

I. Motivation.
Recall: \[E(R_p) = \sum_{i=1}^{N} X_i E(R_i) \]
\[\sigma^2(R_p) = \sigma_p^2 = \sum_{i=1}^{N} X_i^2 \sigma_i^2 + \sum_{i=1}^{N} \sum_{j=1}^{N} X_i X_j \sigma_i \sigma_j \rho_{ij} \]

A. To Use Portfolio Analysis, need following inputs.
- \(E(R_i); \ i = 1, \ldots, N; \) (N estimates required)
- \(\sigma_i^2; \ i = 1, \ldots, N; \) (N estimates required)
- \(\rho_{ij}; \ i, j = 1, \ldots, N. \) (N(N-1)/2 estimates)

1. Need to forecast the correlation matrix.
If \(N = 150 \) stocks, \(N(N-1)/2 = 11,175! \)
B. Estimation requirements for ρ_{ij} present a problem.

1. Organizational problems.
 a. Investment firms organize their analysts along industry categories; Analyst familiar with chemical stocks may not know correlation with steel stocks, …

2. Data problems.
 a. Large numbers of ρ’s to estimate.

C. Want to Simplify Computational Needs.

1. Problems have motivated development of models to describe & predict ρ_{ij}.
 a. Models fall into two categories:
 i. Index Models. - E&G, Chapter. 7
 ii. Averaging Techniques. - E&G, Chapter. 8

2. Assume covariation among stocks due to a single common influence (or index, the market), - the Single-Index Model.

3. Single-Index Model is used to estimate ρ_{ij}; to investigate efficient mkt tests & equilibrium tests; to learn more about how capital markets work.
II. Single-Index Models.

A. Overview.

1. Fact: When \(\text{mkt} \uparrow \), most stock prices \(\uparrow \).
 When \(\text{mkt} \downarrow \), most stock prices \(\downarrow \).

2. One reason stock prices are correlated is common response to market changes.

3. Recall, \(\sigma_p^2 = (1/N) \sigma^2 + (N-1)/N \sigma_{ij} \).

4. A measure of \(\rho_{ij} \) can be obtained by relating stock’s return to return on Market Index.

B. The Single-Index Model.

Basic Equation: \(R_i = \alpha_i + \beta_i R_m + \varepsilon_i; \quad i = 1 - N \)

By Construction: \(E(\varepsilon_i) = 0; \quad i = 1 - N. \)

By Assumption: \(E[\varepsilon_i (R_m - \bar{R}_m)] = 0; \quad i = 1 - N. \)
 \(E(\varepsilon_i \varepsilon_j) = 0; \quad i \neq j. \)

By Definition: \(\text{Var}(\varepsilon_i) = \sigma_{\varepsilon_i}^2; \quad i = 1 - N. \)
 \(\text{Var}(R_m) = E(R_m - \bar{R}_m)^2 = \sigma_m^2. \)
C. Elaborate on The Single-Index Model

1. Definitions:
 \(R_i \) = return on stock i;
 \(R_m \) = return on Market Index;
 \(\beta_i \) = coefficient of \(R_m \):
 \(\text{if } \beta_i > 1, \text{ stock more risky than mkt; } \)
 \(\text{if } \beta_i < 1, \text{ stock less risky than mkt; } \)
 -- Measures responsiveness of \(R_i \) to \(R_m \);
 -- Part of movements in \(R_i \) related to \(R_m \).
 \(\alpha_i \) = intercept:
 \(R_i \) may be higher or lower than \(\beta_i R_m \),
 depending on company characteristics;
 -- Nonrandom part of movements in \(R_i \)
 that are unique to firm i;
 -- If \(R_m = 0, \ E(R_i) = \alpha_i. \)
 \(\epsilon_i \) = random error or ‘noise’ for firm i;
 \(R_i \) may not \(= [\alpha_i + \beta_i R_m] \) at all times,
 for reasons specific to the firm.
 -- Random part of movements in \(R_i \)
 that are unique to firm i.
2. Assumptions:

\[E(\varepsilon_i) = 0; \text{ randomness } \neq 0, \text{ but on avg washes out.} \]

\[E[\varepsilon_i (R_m - E(R_m))] = 0; \]

firm’s randomness uncorrelated with \(R_m \);

If \(R_m \uparrow \), \(\varepsilon_i \) should not \(\uparrow \), & visa versa.

\[E(\varepsilon_i \varepsilon_j) = 0; \text{ randomness in firm } i \text{ uncorrelated with randomness in firm } j; \]

The only reason \(R_i \) & \(R_j \) move together is \(R_m \).

\[\text{Var}(\varepsilon_i) = \sigma_{\varepsilon_i}^2 = \text{amount of randomness about line.} \]

3. Implications:

If \(R_m \uparrow \), expect \(R_i \uparrow \) by \((\beta_i R_m)\), & \(R_j \uparrow \) by \((\beta_j R_m)\);

Thus, \(R_i \) & \(R_j \) correlated according to \(\beta_i, \beta_j, \) & \(\Delta R_m \).

However, if \(\varepsilon_i \uparrow \), do not expect \(R_m \) or \(\varepsilon_j \) to \(\uparrow \).

No effects beyond the market that account for \(\rho_{ij} \).

4. Observations:

\(\varepsilon_i \) is random variable \[\text{distributed } N\{0, \sigma_{\varepsilon_i}^2\} \].

\(R_m \) is random variable \[\text{distributed } N\{E(R_m), \sigma_m^2\} \].

\(R_i \) is random variable; depends on \(R_m \) and \(\varepsilon_i \! \text{!} \)

\[E(R_i) = \alpha_i + \beta_i R_m \] \hspace{1cm} (Result 1).

\(\sigma_i^2 \) must also depend on \(\sigma_m^2 \) and \(\sigma_{\varepsilon_i}^2 \) \hspace{1cm} (Result 2).
The Single Index Model, cont. \(R_i = \alpha_i + \beta_i R_m + \varepsilon_i \);

Fact:
\[
\beta_i = \beta_{im} = \rho_{im} \left(\frac{\sigma_i}{\sigma_m} \right) = \frac{\sigma_{im}}{\sigma_m^2}.
\]
So, \(\beta_i = \rho_{im} \left(\frac{\sigma_i}{\sigma_m} \right) = \sigma_{im} / \sigma_m^2 \) and \(\rho_{im} = \beta_i \left(\frac{\sigma_m}{\sigma_i} \right) \).

D. Result 1.

The expected return on a security is:
\[
E(R_i) = E[\alpha_i + \beta_i R_m + \varepsilon_i] = E(\alpha_i) + \beta_i E(R_m) + E(\varepsilon_i) = \alpha_i + \beta_i E(R_m);
\]

Or \(E(R_i) = \alpha_i + \beta_i \bar{R}_m; \)

Or, \(\bar{R}_i = \alpha_i + \beta_i \bar{R}_m. \)
E. Result 2.

The variance of return on any security is:

$$\sigma^2(R_i) = \sigma_i^2 = E(R_i - \bar{R_i})^2 \phantom{[\neq \sigma_{ei}^2]}$$

Substituting for R_i and \bar{R}_i:

$$\sigma_i^2 = E[(\alpha_i + \beta_i R_m + \varepsilon_i) - (\alpha_i + \beta_i \bar{R_m})]^2$$

$$= E[\beta_i (R_m - \bar{R_m}) + \varepsilon_i]^2$$

$$= \beta_i^2 E(R_m - \bar{R_m})^2 + 2\beta_i E[\varepsilon_i (R_i - \bar{R_m})] + E(\varepsilon_i^2)$$

Or,

$$\sigma_i^2 = \beta_i^2 \sigma_m^2 + \sigma_{ei}^2$$

F. Result 3.

The covariance between any two securities is:

$$\sigma_{ij} = E[(R_i - \bar{R}_i)(R_j - \bar{R}_j)]$$

$$= E\{[\alpha_i + \beta_i R_m + \varepsilon_i] - [\alpha_i + \beta_i \bar{R_m}]\} \{[\alpha_j + \beta_j R_m + \varepsilon_j] - [\alpha_j + \beta_j \bar{R_m}]\}$$

$$= E[\beta_i (R_m - \bar{R_m}) + \varepsilon_i][\beta_j (R_m - \bar{R_m}) + \varepsilon_j]$$

$$= \beta_i \beta_j E(R_m - \bar{R_m})^2 + \beta_j E[\varepsilon_i (R_m - \bar{R_m})] +$$

$$+ \beta_i E[\varepsilon_j (R_m - \bar{R_m})] + E(\varepsilon_i \varepsilon_j)$$

Or,

$$\sigma_{ij} = \beta_i \beta_j \sigma_m^2$$
G. Implications.

If this specified relation (the Single-Index Model) represents the joint movement among securities, we can derive expressions for $E(R_i)$, σ_i^2, and σ_{ij}.

These are the input requirements for portfolio analysis.

Result 1: $E(R_i) = \alpha_i + \beta_i E(R_m) - [E&G, R_i, R_m]$

Result 2: $\sigma_i^2 = \beta_i^2 \sigma_m^2 + \sigma_{\epsilon i}^2$

Result 3: $\sigma_{ij} = \beta_i \beta_j \sigma_m^2$

The individual security’s return is now described in relation to Market’s return: $\{E(R_m), \sigma_m^2, \text{ and } \beta_i\}$.

This allows great simplification in computing the expected return & variance of any portfolio: $\{E(R_p) \text{ and } \sigma_p^2\}$.
III. Expected Return and Variance of a Portfolio.

\[
E(R_p) = \sum_{i=1}^{N} X_i E(R_i) \quad \text{[Result 1]}
\]

\[
E(R_p) = \sum_{i=1}^{N} X_i \alpha_i + \sum_{i=1}^{N} X_i \beta_i E(R_m)
\]

\[
\sigma_p^2 = \sum_{i=1}^{N} X_i^2 \sigma_i^2 + \sum_{i=1}^{N} \sum_{j=1}^{N} X_i X_j \sigma_{ij} \quad \text{[Results 2 & 3]}
\]

\[
\sigma_p^2 = \sum_{i=1}^{N} X_i^2 \beta_i^2 \sigma_m^2 + \sum_{i=1}^{N} \sum_{j=1}^{N} X_i X_j \beta_i \beta_j \sigma_m^2 + \sum_{i=1}^{N} X_i^2 \sigma_{ei}^2
\]

If we have estimates of:
1. \(\alpha_i \); \(i = 1 - N \); [or \(E(R_i) \)]
2. \(\beta_i \); \(i = 1 - N \); for each stock
3. \(\sigma_{ei}^2 \); \(i = 1 - N \); [or \(\sigma_i^2 \)]
4. \(\sigma_m^2 \);
5. \(E(R_m) \) for the Market

Then we can estimate \(E(R_p) \) and \(\sigma_p^2 \).
This requires \(3N+2 \) estimates. \([< N(N-1)/2!] \)
Note: Unnecessary to estimate $N(N-1)/2$ ρ’s directly. Only need to estimate the β_i’s showing how each security moves with respect to the Market.

A firm organized with analysts focusing on specific groups of stocks can easily expect these inputs.

Can also employ this model (to estimate $E(R_p)$ & σ_p^2) if analysts supply estimates of:

1. $E(R_i)$; $i = 1-N$; [replaces α_i]
2. β_i; $i = 1-N$;
3. σ_i^2; $i = 1-N$; [Replaces σ_{ii}^2]
4. σ_m^2;
5. $E(R_m)$.
IV. Characteristics of the Single-Index Model.

A. Portfolio β_p and α_p.

$$E(R_p) = \sum_{i=1}^{N} X_i \alpha_i + \sum_{i=1}^{N} X_i \beta_i \cdot E(R_m)$$

If we let the portfolio’s beta $= \beta_p = \sum X_i \beta_i$, and the portfolio’s alpha $= \alpha_p = \sum X_i \alpha_i$, then $E(R_p) = \alpha_p + \beta_p \cdot E(R_m)$.

Consider portfolio P to be Market portfolio (M). Then $E(R_p)$ must $= E(R_m)$. For this to be true, $\alpha_p = 0$ and $\beta_p = 1$.

\rightarrow The Market’s beta is 1.

If $\beta_i > 1$, stock is more risky than Market;
If $\beta_i < 1$, stock is less risky than Market.

β_i measures security’s risk.
B. Portfolio risk, σ_p^2.

$$\sigma_p^2 = \sum_{i=1}^{N} X_i^2 \beta_i^2 \sigma_m^2 + \sum_{i=1}^{N} \sum_{j=1}^{N} X_i X_j \beta_i \beta_j \sigma_m^2 + \sum_{i=1}^{N} X_i^2 \sigma_{\epsilon_i}^2$$

Observe:
In the double sum, $i \neq j$ yields cross-product terms.
If $i=j$, then the terms would be $X_i^2 \beta_i^2 \sigma_m^2$;
but these are just the terms in the first sum.

Thus, we can re-write as a single double-sum:

$$\sigma_p^2 = \sum_{i=1}^{N} \sum_{j=1}^{N} X_i X_j \beta_i \beta_j \sigma_m^2 + \sum_{i=1}^{N} X_i^2 \sigma_{\epsilon_i}^2$$

Or

$$\sigma_p^2 = \sum_{i=1}^{N} X_i \beta_i \sum_{j=1}^{N} X_j \beta_j \sigma_m^2 + \sum_{i=1}^{N} X_i^2 \sigma_{\epsilon_i}^2$$

Or

$$\sigma_p^2 = \beta_p^2 \sigma_m^2 + \sum_{i=1}^{N} X_i^2 \sigma_{\epsilon_i}^2$$
C. The Security’s contribution to σ_p^2.

$$\sigma_p^2 = \beta_p^2 \sigma_m^2 + \sum_{i=1}^{N} X_i^2 \sigma_{\varepsilon_i}^2$$

1. Consider naïve diversification, letting $X_i = 1/N$:

Then $\sigma_p^2 = \beta_p^2 \sigma_m^2 + \frac{1}{N} \sum_{i=1}^{N} \frac{1}{N} \sigma_{\varepsilon_i}^2$.

The last sum is the avg residual (firm-specific) risk for all securities in the portfolio.

2. As $N \to \infty$, second term $\to 0$, and $\sigma_p^2 \to \beta_p^2 \sigma_m^2$.

As $N \uparrow$, individual security risk is diversified away, but the risk from broad market movements remains.

3. Since σ_m^2 is the same, regardless of which stock, the factors that influence β_p are the relevant factors that contribute to portfolio risk.

4. Since $\beta_p = \sum X_i \beta_i$, the contribution of security i to σ_p is its β_i; ε_i and $\sigma_{\varepsilon_i}^2$ are irrelevant to σ_p if we diversify.
5. Implications.

Again, the ‘total risk’ of an individual security is:

\[\sigma_i^2 = \beta_i^2 \sigma_m^2 + \sigma_{\varepsilon i}^2. \]

↑
↑
nondiversifiable diversifiable
systematic nonsystematic

Since diversifiable risk can be eliminated cheaply by simply \(\uparrow \)ing \(N \), the Market will not pay a higher return for a stock with a higher \(\sigma_{\varepsilon i}^2 \).

What matters is the risk in a security that cannot be diversified away \(\rightarrow (\beta_i^2 \sigma_m^2) \).
Again, since \(\sigma_m^2 \) is the same for any security, i, \(\beta_i \) is the relevant measure of a security’s risk, as well as the security’s risk contribution to \(\sigma_p^2 \).
V. Estimating β_i.

To estimate $E(R_p)$ & σ_p^2 with Single-Index Model, we need forecasts of each firm’s β_i, to estimate $E(R_i)$, σ_i^2, and the ρ_{ij} – the correlation matrix.

A. Estimating Historical β’s.

The Single-Index Model:

$$ R_i = \alpha_i + \beta_i R_m + \varepsilon_i $$

Observe $\{R_{mt}, R_{it}\}$ over time; estimate $\{\alpha_i, \beta_i, \sigma_{\varepsilon_i}^2\}$.

1. Regression estimates of α_i and β_i:

$$ \hat{\beta}_i = \frac{\sigma_{im}}{\sigma_m^2} = \frac{\sum (R_{it} - \bar{R}_i)(R_{mt} - \bar{R}_m)}{\sum (R_{mt} - \bar{R}_m)^2} $$

$$ \hat{\alpha}_i = R_{it} - \hat{\beta}_i \bar{R}_{mt} $$

2. Note: β_i is related to ρ_{im}.

$$ \rho_{im} = \frac{\sigma_{im}}{\sigma_i \sigma_m} = \frac{\sigma_{im} \sigma_m - \sigma_{im} \sigma_m}{\sigma_i \sigma_m \sigma_m \sigma_i} = \frac{\sigma_{im} \sigma_m}{\sigma_i \sigma_m} = \frac{\beta_i \sigma_m}{\sigma_i \sigma_m} $$
3. Consider $\sigma_{\varepsilon_i^2}$.

Suppose $\alpha_i = 4$ and $\beta_i = .7$;
Then, if $R_m \uparrow 1\%$, expect $R_i \uparrow .7\%$.

Some obs. will lie above the line, some below.
If obs. close to estimated line, $\sigma_{\varepsilon_i^2}$ small;
If obs. spread out around estimated line, $\sigma_{\varepsilon_i^2}$ big.

Wire through pipe analogy; $\sigma_{\varepsilon_i^2}$ = diameter of pipe.
More noise, less precision; less confidence in β_i.

$\sigma_{\varepsilon_i^2}$ is the variance of deviations from line.

Deviations $= [R_{it} - (\hat{\alpha}_i + \hat{\beta}_i R_{mt})] = e_{it}$

$\text{Var}(e_{it}) = (1/N) \sum_{t=1}^{N} [R_{it} - (\alpha_i + \beta_i R_{mt})]^2 = E(e_{it}^2)$.
B. Accuracy of Historical β’s.

Reasonable to use historical data on R_i and R_m, to estimate historical β_i as predictor of future β_i.

1. Problems:
 a. True β’s nonstationary – change over time.
 Goal is to predict future β’s – future ρ’s!
 b. Regression Model estimates of β have ‘error’;
 – only estimates of true β.

2. Blume study:

 Computed historical β’s over 2 different 7-year periods.

<table>
<thead>
<tr>
<th>Number of Securities</th>
<th>Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>individual securities</td>
<td>.60</td>
</tr>
<tr>
<td>2-stock portfolios</td>
<td>.73</td>
</tr>
<tr>
<td>4-stock portfolios</td>
<td>.84</td>
</tr>
<tr>
<td>7-</td>
<td>.88</td>
</tr>
<tr>
<td>10-</td>
<td>.92</td>
</tr>
<tr>
<td>20-</td>
<td>.97</td>
</tr>
<tr>
<td>35-</td>
<td>.97</td>
</tr>
<tr>
<td>50-</td>
<td>.98</td>
</tr>
</tbody>
</table>

 Compared β’s for each size portfolio across the 2 periods.
 How did β’s change? What is correlation across periods?

 Found: 1) β’s on large pfs changed little over time;
 2) β’s on small pfs changed more over time.

 Thus, β’s on small pfs contain less info about future β’s.
3. Why Blume’s result?
 a. Why might estimates of historical β change?
 i. because true β’s change;
 ii. historical β estimates are measured with error.
 b. Confidence in historical β from regression model depends on how much noise, $\sigma_{\epsilon i}^2$, around fitted line.
 i. The larger is $\sigma_{\epsilon i}^2$:
 - the less confidence in historical β;
 - the less predictive power historical β will have for future β.
 c. Changes in historical β’s for individual stocks will wash each other out in a portfolio.
 i. Changes in true β’s will differ across stocks;
 ii. Errors in historical β estimates differ across stocks;
 iii. Some β estimates will \uparrow; some will \downarrow;
 iv. When combined into portfolio, individual changes & errors tend to cancel out.
 v. Thus should observe less change in portfolio β’s.
 d. Portfolio β’s are thus better predictors of future β’s than are individual security β’s.
C. Fundamental β’s.

Firm’s true risk reflects more than just how R_i responds to R_m (i.e., β_i).

1. Firm’s fundamentals matter!
Firm’s fundamentals should affect its risk (β):

(-) a. Dividend payout ratio (Div./Earnings);
(+) b. Asset growth;
(+) c. Leverage (Debt/Equity);
(-) d. Liquidity (Curr. Assets)/(Curr. Liab.);
(-) e. Asset Size;
(+) f. Earnings Variability;
(+) g. Earnings β (or Accounting β).

2. Cross-sectional Regression Model.
Consider info about firm’s fundamentals to improve predictions of future β.

$$\beta_i = a_0 + a_1 X_{1i} + a_2 X_{2i} + \ldots + a_3 X_{Ni} + \varepsilon_i$$

where β_i = i^{th} firm’s historical β;
X’s represent N fundamental factors that may affect risk for i^{th} firm;
a_k = impact of k^{th} fundamental on β_i.

3. The fitted values = “fundamental β’s.”
4. Barr Rosenberg’s Model.

 a. Combines information on historical β’s with information on firm fundamentals.

 b. Among his 101 variables in regression Model:

 i. market characteristics of stock:
 1. previous estimates of firm’s historical β;
 2. share trading volume;
 3. daily price trading range; …

 ii. measures of firm fundamentals:
 1. measures of Earnings variability;
 2. indicators of perceived success;
 3. firm size and age;
 4. measures of historical & perceived growth;
 5. measures of financial risk;
 6. other firm characteristics (listing, business…).

 iii. Industry dummy variables.
 To measure influence of industry characteristics on the firm’s fundamental β.

 c. Difficult to interpret all the a_k estimates;
 Who cares? Goal is to forecast β.
 Seems to provide better forecasts than either historical β’s or fundamental data alone.

5. Alternative Approach: Forecast X’s, then β’s.
Forecast future firm fundamentals;
Plug in forecasted X’s to generate forecasts of β_i.

 a. With 101 variables, difficult task!
 b. Has been done with much simpler models.

6. Wells Fargo approach, E&G, Ch. 18.
D. The Market Model.

1. Same as Single-Index Model, except do not assume $E(\varepsilon_i \varepsilon_j) = 0$.

 Basic Equation: $R_i = \alpha_i + \beta_i R_m + \varepsilon_i; \quad i = 1 - N$

 By Construction: $E(\varepsilon_i) = 0; \quad i = 1 - N.$

 By Assumption: $E[\varepsilon_i (R_m - \bar{R}_m)] = 0; \quad i = 1 - N.$

 (NOT THIS) $E(\varepsilon_i \varepsilon_j) = 0; \quad$ for $i \neq j.$

 By Definition: $\text{Var}(\varepsilon_i) = \sigma_i^2; \quad i = 1 - N.$

 $\text{Var}(R_m) = E(R_m - \bar{R}_m)^2 = \sigma_m^2.$

2. Estimating β_i is the same with the Single-Index Model or Market Model.

 a. Implications for portfolio risk are not same;

 Since Mkt Model does not assume $E(\varepsilon_i \varepsilon_j) = 0,$
 it does not lead to the simple expressions of portfolio risk implied by Single-Index Model.
 (See IV.B. discussion above.)

 b. Used in tests of Efficiency (E&G, Ch. 17).
VI. Summary

1. One goal is to forecast firm β’s & judge individual firm risk.

2. Another goal is to forecast correlation matrix for N stocks.
 Recall: need forecasts of $E(R_i)$, σ_i^2 and ρ_{ij}
 to forecast $E(R_p)$ and σ_p^2 – opportunities locus.

3. Single Index Model simplifies process:
 - simplifies immense data problem;
 - resolves organizational problem (firms org. by industry).

4. How well does S-I Model forecast correlation matrix?
 S-I Model: $\rho_{ij} = \sigma_{ij}/\sigma_i\sigma_j = (\beta_i\beta_j\sigma_m^2)/\sigma_i\sigma_j$.

 Studies compare forecasts from historical ρ’s
 with forecasts from S-I Model using β’s.

 Find β’s forecast future ρ’s better than historical ρ’s.

 -- S-I Model outperforms historical correlations!

5. Single Index Model useful.
 a. Simpler than estimating entire correlation matrix;
 b. Forecasts future ρ’s better than correlation matrix.